الگوریتم بهینه سازی ازدحام ذرات یا الگوریتم PSO یک الگوریتم جستجوی اجتماعی است که از روی رفتار اجتماعی دسته های پرندگان مدل شده است. در ابتدا این الگوریتم به منظور کشف الگوهای حاکم بر پرواز همزمان پرندگان و تغییر ناگهانی مسیر آنها و تغییر شکل بهینهی دسته به کار گرفته شد. در الگوریتم PSO، ذرات در فضای جستجو جاری میشوند. تغییر مکان ذرات در فضای جستجو تحت تأثیر تجربه و دانش خودشان و همسایگانشان است. بنابراین موقعیت دیگر توده ذرات روی چگونگی جستجوی یک ذره اثر میگذارد. نتیجهی مدلسازی این رفتار اجتماعی، فرایند جستجویی است که ذرات به سمت نواحی موفق میل میکنند. ذرات از یکدیگر میآموزند و بر مبنای دانش بدست آمده به سمت بهترین همسایگان خود میروند. اساس کار الگوریتم PSO بهینه سازی ازدحام ذرات بر این اصل استوار است که در هر لحظه هر ذره مکان خود را در فضای جستجو، با توجه به بهترین مکانی که تاکنون در آن قرار گرفته است و بهترین مکانی که در کل همسایگیاش وجود دارد، تنظیم میکند. در این تحقیق، ابتدا به شرح الگوریتم PSO پرداخته و ...
روش بهینهسازی ازدحام ذرات یا به اختصار PSO، یک روش سراسری بهینهسازی است که با استفاده از آن میتوان با مسائلی که جواب آنها یک نقطه یا سطح در فضای n بعدی میباشد، برخورد نمود. در اینچنین فضایی، فرضیاتی مطرح میشود و یک سرعت ابتدایی به آنها اختصاص داده میشود، همچنین کانالهای ارتباطی بین ذرات در نظر گرفته میشود. سپس این ذرات در فضای پاسخ حرکت میکنند، و نتایج حاصله بر مبنای یک «ملاک شایستگی» پس از هر بازهٔ زمانی محاسبه میشود. با گذشت زمان، ذرات به سمت ذراتی که دارای ملاک شایستگی بالاتری هستند و در گروه ارتباطی یکسانی قرار دارند، شتاب میگیرند. علیرغم اینکه هر روش در محدودهای از مسائل به خوبی کار میکند، این روش در حل مسائل بهینه سازی پیوسته موفقیت بسیاری از خود نشان دادهاست. برای مشاهده ویدیو اجرای پروژه می توانید بر روی لینک زیر کلیک کنید: لینک ویدیو ...